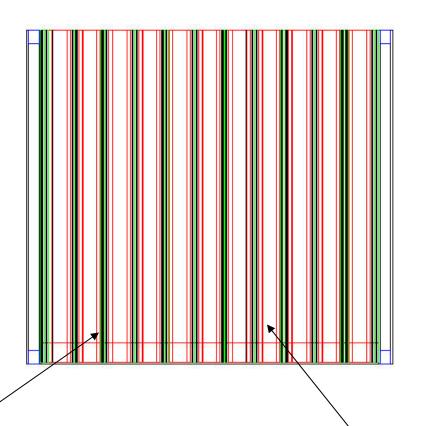

# Monte Carlo Comparison of RPCs and Liquid Scintillator

- RPCs with 1-dimensional readout (generated by RR) and liquid scintillator with no pulse height (generated by PL/LM) should give similar results.
- Comparing results serves as a useful cross check for RPC and liquid simulations.
- Detailed description of custom container implemented in GEANT.
  - O Plywood absorber
  - O 12 double gap RPCs modules per container
  - O 6 RPCs per module (3 wide x 2 deep)
  - O 5 mm dead space around edge of each RPC
  - O X & Y readout strips (can be used as X or Y at analysis stage)
  - O Cross-talk between strips included.
  - O Using beam file for 820 km, 10 km off-axis.
- Generating large samples of events on the farm:
  - $\nu_{\rm u} \rightarrow \nu_{\rm e}$
  - $\circ$   $\nu_{\mu}$  CC
  - $o_{\nu_{\mu}} NC$
  - O Beam  $v_e$


### **General Strategy**

- Implement custom container description in GEANT.
- Use NEUGEN3 event generator with a flat energy distribution
- Weight interaction vertex in GEANT by number of target nucleons in various materials
- Parabolic fit to multiple tracks in an event.
- Weight final distributions by evolved beam spectra.

# **GEANT Implementation**



# Side view

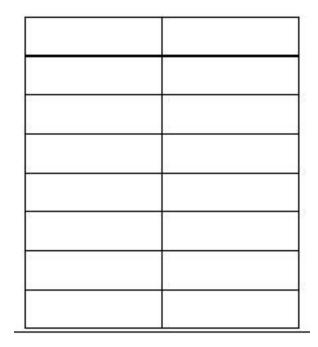


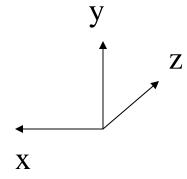
Y

RPC Modules 12 modules in all Modules include 6 RPCs (3 wide by 2 deep)

I gnore Y strips for odd numbered modules
I gnore X strips for even numbered modules

Plywood Absorber 11 full layers + 2 half layers Full layers 15.24 cm thick, ~28% X<sub>0</sub>

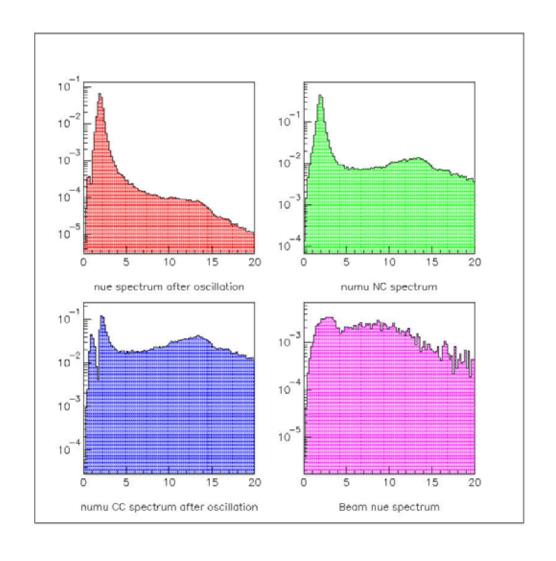

#### 50 kton Detector 2 X 8 X 75 Stack of Containers


1/2 in. vertical gap between RPC modules in adjacent containers

3/8 in. horizontal gap between RPC modules in adjacent containers

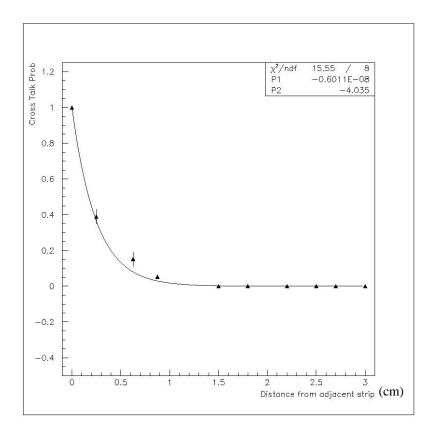
RPCs have a 5 mm dead space around outer edge.  $\rightarrow$  1 cm dead space between the set of 3 RPCs in each plane.

2 in. gap between containers in Z






#### Evolved Neutrino Energy Spectra


Flat neutrino spectrum generated between 0.1 - 3.5 GeV for  $\nu_e$  and 0.1 - 20 GeV for  $\nu_\mu$  and Beam  $\nu_e$ 

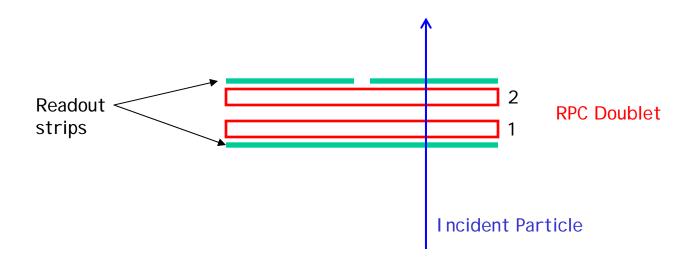
Weight applied at ntuple level.



#### Cross Talk (Charge Sharing) Implemented in GEANT

Cross talk is one of the biggest differences between the two technologies




Based on measurements by Valeri on small chambers.

Strip 1 Strip 2

0 4 cm

Cross talk is determined from the probability of a hit on strip 1 for a hit on strip 2 as a function of distance from strip 1

# Cross Talk (cont.)



One can imagine that cross talk from direct induction goes as the solid angle ...

#### For each of the two RPCs:

Use probability curve on previous page for cross talk on the near readout strip. For the far readout strip compress the horizontal axis by a factor of 2, i.e. the cross talk at 0.25 cm becomes the cross talk at 0.5 cm.

#### Cut on the following at ntuple level

- ≥ 1 reconstructed track in each view with reasonable  $\chi^2$
- Total Hits
- Length of electron candidate track in each view
- Ave. hits/plane for electron candidate track in each view
- Fraction of hits on electron candidate track/total hits
- Hits on electron candidate track in each view
- No more than 2 hits outside fiducial volume (50 cm in X & Y, 2 m in Z)

#### Use the following to form likelihood distributions

- Number of hit planes on electron candidate track
- RMS width distribution of electron candidate track
- Track angle with respect to beam direction
- Largest gap in electron candidate track
- Fraction of hits on electron candidate track/total hits
- Ave. hits/plane for electron candidate track in each view

# Results

| Liquid no ph |                                 |                |                |                     |  |  |
|--------------|---------------------------------|----------------|----------------|---------------------|--|--|
|              | $\nu_{\mu} \rightarrow \nu_{e}$ | $\nu_{\mu}$ NC | $\nu_{\mu}$ CC | Beam v <sub>e</sub> |  |  |
| Efficiency   | 0.14                            | 0.002          | 0.0001         | 0.02                |  |  |
| # of events  | 123                             | 21.7           | 1.6            | 11.1                |  |  |
| FOM          | 21.0                            |                |                |                     |  |  |

| RPC X or Y  |                                 |                |                      |              |  |  |
|-------------|---------------------------------|----------------|----------------------|--------------|--|--|
|             | $\nu_{\mu} \rightarrow \nu_{e}$ | $\nu_{\mu}$ NC | $\nu_{\mu}$ CC       | Beam $\nu_e$ |  |  |
| Efficiency  | 0.13                            | 0.002          | 8 x 10 <sup>-5</sup> | 0.02         |  |  |
| # of events | 112                             | 19.8           | 1.1                  | 13.1         |  |  |
| FOM         | 19.2                            |                |                      |              |  |  |

| RPC X and Y |                                 |                |                      |                     |  |  |
|-------------|---------------------------------|----------------|----------------------|---------------------|--|--|
|             | $\nu_{\mu} \rightarrow \nu_{e}$ | $\nu_{\mu}$ NC | $\nu_{\mu}$ CC       | Beam v <sub>e</sub> |  |  |
| Efficiency  | 0.15                            | 0.0007         | 7 x 10 <sup>-7</sup> | 0.024               |  |  |
| # of events | 133                             | 7.6            | 0.01                 | 15.1                |  |  |
| FOM         | 27                              |                |                      |                     |  |  |

# Summary

- RPC X or Y and liquid scint with no pulse height get consistent results.
- Results are not as good as RPC X and Y or liquid scint with pulse height, as expected.
- Study does not tell us much about a technology choice, but it would seem to indicate that no one is making any large blunders
- Algorithms being used are still somewhat primitive. More sophisticated algorithms will be developed over time and efficiencies and FOMs will improve.